Zum Hauptinhalt springen

Intern - Computational science (80-100%)

Bei ABB unterstützen wir Industrien dabei, effizienter und nachhaltiger zu werden. Fortschritt ist bei uns keine Option, sondern selbstverständlich – für Sie, Ihr Team und die Welt. Als globaler Marktführer bieten wir Ihnen alles, was Sie brauchen, um diesen Wandel voranzutreiben. Der Weg dorthin ist nicht immer einfach – denn echtes Wachstum erfordert Mut. Aber bei ABB gehen Sie ihn nicht allein. Run what runs the world.

Diese Position berichtet an:

R&D Team Lead

 

Your Role and Responsibilities

We offer an internship position in the field of numerical methods and scientific computing for industrial applications. The scope of the internship is to contribute to ongoing projects aiming at extending and improving existing simulation software for multiphysics applications in electrical engineering. The focus of the work will be on understanding, developing, and implementing advanced numerical models to improve accuracy, robustness, and speed.

During the internship, you will be integrated in the Theoretical and Computational Methods Team, and you will have the opportunity to work closely with experienced researchers in an international group of leading scientists and engineers, where you will be able to thrive.

The work model for the role is: #LI-Onsite

You will be mainly accountable for: 

  • Collaborating with the research team to develop and implement numerical algorithms for scientific computing applications
  • Reading relevant literature to understand existing methodologies
  • Participating in the coding and testing of software tools
  • Analyzing computational results and providing insights for optimizing algorithms and software performance
  • Presenting progress and results to the team during regular meetings
  • Documenting findings, methodologies, and results

Qualifications for the role:

  • Enrolled student in numerical mathematics, mathematical engineering, computational sciences, or a related subject (advanced B.Sc. or M.Sc. level)
  • Fundamental understanding of numerical methods and algorithms from both theoretical and practical perspectives.
  • Knowledge of numerical methods for partial differential equations is a plus
  • Good scientific programming skills, in the context of numerical methods (e.g. C++, MATLAB, Python, Java etc.)
  • Curiosity, analytical, and problem-solving skills and ability to work independently as well as part of an international team
  • Good communication skills in English, both written and verbal
  • Availability for six months (flexible start date early 2026)

What's in it for you

We empower you to take initiative, challenge ideas, and lead with confidence. You’ll grow through meaningful work, continuous learning, and support that’s tailored to your goals. Every idea you share and every action you take contributes to something bigger. 

More about us

The theoretical and computational methods group at the Swiss ABB research center develops, maintains, and improves models and numerical tools describing physical phenomena relevant to ABB products and technologies. These are used to support the development of more efficient and sustainable next-generation products.

We look forward to receiving your application (CV and Cover Letter submitted in English are appreciated).

The recruiting process is being led by Mara Werne, Talent Partner at ABB Switzerland, Ltd.

If you want to discover more about ABB, take another look at our website www.abb.com.  

Call to action

Be part of something bigger. This is where progress is powered, teams initiate action, and we move the world forward together. Run What Runs the World.

Wir schätzen Menschen mit unterschiedlichem persönlichem Hintergrund. Könnte das hier Teil Ihrer Geschichte werden? Bewerben Sie sich noch heute oder besuchen Sie www.abb.com, um mehr über uns zu erfahren und sich über die Wirkung, die unsere Industrielösungen auf der ganzen Welt haben, zu informieren.

Intern - Computational science (80-100%)

Baden
Vollzeit

Veröffentlicht am 03.11.2025

Jetzt Job teilen